Key Stage 1

ractions 2 Answers

Schofield&Sims

Name

Know and use the notation for quarters of shapes

7 Circle the fraction that shows three out of four equal parts.

 $\frac{1}{4}$ $\frac{4}{3}$ $\frac{2}{4}$ $\left(\frac{3}{4}\right)$ $\frac{1}{2}$

Tick the picture that shows $\frac{3}{4}$ of a pie.

8

- **17**Yes or no? $\frac{3}{4}$ and $\frac{1}{4}$ together make a whole.YesNo
- **18** Write a fraction in the box to show the total of one-half of a cake and one-quarter of a cake.

$$\frac{1}{2} + \frac{1}{4} = \boxed{\frac{3}{4}}$$

Know and use the notation for quarters of sets

Key point

To find quarters of a set of objects, sort the objects into four equal groups.

 $\frac{1}{4}$ of this set of t-shirts is white.

 $\frac{3}{4}$ of this set of t-shirts is orange.

Understand that fractions join to make wholes

Find $\frac{1}{2}$ of numbers and write fraction statements

Key point

Half of a number of objects is found by sorting them into two equal groups.

Half of 8 ducks is 4 ducks. Half of 8 is 4. $\frac{1}{2}$ of 8 = 4

Get started

Now try these

- A farmer has 12 sheep. She puts half of them into a pen.
 How many is that? 6
- 8 One whole cake has 8 slices.
 How many slices is half the cake? 4

Make $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{3}{4}$ turns and know $\frac{1}{2}$ is the same as $\frac{2}{4}$

Key point

A **full turn** is when something is turned **all the way round** until it is in the same position again.

- A $\frac{1}{4}$ turn is **one-quarter** of a full turn.
- A $\frac{1}{2}$ turn or $\frac{2}{4}$ of a turn is **one-half** of a full turn.
- A $\frac{3}{4}$ turn is **three-quarters** of a full turn.

9	What number will the big hand on the clock point to after a $\frac{1}{4}$ turn? 3	
10	The big hand of the clock points to 9 and then turns clockwise to point to 6. How many quarters of a full turn has the hand turned? $\frac{3}{4}$	
11	This tile is turned a $\frac{3}{4}$ turn clockwise. Tick to show what it looks like now.	
12	Yes or no? A turn of two-quarters is the same as half a turn. Yes 🖌 No 🗌	
Challenge		
13	Yes or no? If the top layer of this cube is turned a $\frac{1}{4}$ turn clockwise, the orange squares will all be together. Yes \checkmark No \square	
14	The big hand of a clock points to the number 4. What number will it point to after a quarter turn clockwise? 7	
15	Rose turns this lid clockwise. What turn has Rose made? Write your answer as a fraction. $\frac{3}{4}$	
16	Lukas turns a $\frac{1}{4}$ turn clockwise. He then turns another $\frac{1}{4}$ turn clockwise. Tick to show the total turn that Lukas has made.	
	$\frac{1}{4}$ turn $\boxed{\frac{1}{2}}$ turn \checkmark $\frac{3}{4}$ turn	
17	Harry turns a key in a lock through half a turn. He then turns it a $\frac{1}{4}$ turn more. What fraction of a whole turn has he turned the key altogether? $\frac{3}{4}$	
18	Yes or no? If you turn a $\frac{1}{4}$ turn clockwise, you end up facing the same way as if you had turned a $\frac{3}{4}$ turn anticlockwise.	
	Yes 🖌 No	

Count in fractions and use $\frac{1}{2}$ and $\frac{2}{4}$ on number lines

Get started

How many stars are there? $3\frac{1}{2}$	4 How many doughnuts is this? $1\frac{1}{4}$
2 What number is one-half more than $1\frac{1}{2}$? 2	5 Write the missing fraction. $\frac{3}{4}$
3 What number is the arrow pointing to? $1\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c} & & & \\ \hline \\ 0 & \frac{1}{2} & 1 \\ \end{array} \begin{array}{c} & \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array}$	$\begin{array}{c} 6 \\ \text{Write the} \\ \text{number of biscuits.} \\ \hline 3\frac{3}{4} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \bullet \\ \bullet $

Now try these

8

What is one-quarter more than $1\frac{3}{4}$? 2

When counting on in halves, what number comes between 3 and 4? $3\frac{1}{2}$

Check-up test 1

Find $\frac{1}{4}$ of numbers and write fraction statements

Key point

One-quarter of a **number of objects** is found by sorting them into **four equal groups**.

Get started

Now try these

Understand the word 'third' and use the notation $\frac{1}{3}$

Key point

The word **'third'** is used when something is split into **three equal parts**. Each part is **one-third** of the whole.

One-third is one out of three equal parts.

It is written as a fraction like this: $\frac{1}{2}$

Find $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{3}$ of shapes, sets and lengths

Key point

A whole can be split into equal parts to make halves (two equal parts), quarters (four equal parts) or thirds (three equal parts).

The number on the **bottom** of a fraction shows **how many** equal parts the whole is split into.

The number on the **top** of the fraction shows **how many of those parts** are being described.

Find $\frac{1}{4}$, $\frac{2}{4}$ and $\frac{3}{4}$ of numbers

Key point

A whole set can be sorted into four equal groups to show quarters.

One-quarter of 12 counters is 3 counters. $\frac{1}{4}$ of 12 is 3

Two-quarters of 12 counters is 6 counters. $\frac{2}{4}$ of 12 is 6

Three-quarters of 12 counters is 9 counters. $\frac{3}{4}$ of 12 is 9

Connect fractions to multiplication and division facts

Key point

To find **one-half** of a set, share into **two equal groups**. $2 \times 4 = 8 \quad 8 \div 2 = 4 \quad \frac{1}{2} \text{ of } 8 = 4$ To find **one-third** of a set, share into **three equal groups**. $3 \times 2 = 6 \quad 6 \div 3 = 2 \quad \frac{1}{3} \text{ of } 6 = 2$ To find **one-quarter** of a set, share into **four equal groups**. $4 \times 2 = 8 \quad 8 \div 4 = 2 \quad \frac{1}{4} \text{ of } 8 = 2$

Find fractions in a variety of representations

Key point

Wholes can take many forms. If you split **any whole** into equal parts, you get fractions like halves and quarters.

Here different wholes are all split into three equal parts. Each part is $\frac{1}{3}$ or one-third which is 'one out of three equal parts'.

Now try these

An arrow points up. Draw what it will look like after a $\frac{1}{2}$ turn.

Check-up test 2

Final test

